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We quantify the effects of interface roughness and superlattice period on thermoelectric electron filtering in
superlattices, using the nonequilibrium Green’s function method with a realistic description of the interface. In
contrast with previous suggestions, we find that rough interfaces do not enhance the power factor more than
smooth ones. Quantitative results are provided in the case of InGaAs/InAlGaAs superlattices.
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I. INTRODUCTION

The performance of a thermoelectric device is directly
related to the dimensionless figures of merit of its constituent
materials ZT=�S2T /�, where T is the temperature, � is the
conductivity, S is the Seebeck coefficient, and � is the total
thermal conductivity, respectively.1 Thus, good thermoelec-
tric materials are those with high �S2 �also known as power
factor� and low thermal conductivity. Despite decades of ef-
forts, the best commercial thermoelectric materials, such as
Bi2Te3, have ZT�1 at room temperature.

With the development of nanostructured materials, differ-
ent strategies have been theoretically and experimentally in-
vestigated in order to develop materials with higher ZTs. A
rough division can be made between strategies where the
main effect is to decrease the thermal conductivity2–7 and
those aiming at increasing the power factor.8,9 Electron fil-
tering belongs to the second category. A related strategy,
thermionic emission, had been proposed earlier.10–13 How-
ever, later on it was realized that the power factor cannot be
higher than the bulk value14–16 because of the decrease in the
B factors.1,15 Shakouri et al. then proposed to increase the
power factor by using the electron-filtering effect. Emitters
and collectors are made of the working materials and barriers
are made wide enough to decrease the tunneling probabili-
ties. Therefore, carriers with low energies are blocked and
the sharp increase in the transmission function near the bar-
rier height may increase the power factor.17

Vashaee and Shakouri18 showed that enhanced power fac-
tors can be achieved by using electron filtering in superlat-
tices �SLs�. They also pointed out that the nonconservation
of transverse momentum due to rough interfaces may cause a
significant increase in power factors by increasing the num-
ber of particles contributing to the conduction process.19 An
experiment has shown an enhanced Seebeck coefficient in
InGaAs/InAlGaAs superlattices, which has been attributed to
electron filtering.20 However, the effect of nonconservation
of transverse momentum on the thermoelectric power factor
still lacks a conclusive experimental proof.

The theoretical approach developed in Refs. 18 and 19 is
illuminating, but it relied on an earlier argument by
Meshkov21 regarding the electron-tunneling probability

across rough interface barriers. The applicability of Meshk-
ov’s argument to the case considered �where many of the
electron energies are high above the barrier, and thus are not
in the tunneling regime� was not rigorously considered. Fur-
thermore, such a model only distinguishes between purely
smooth and purely rough �which do not have strict mean-
ings� interfaces. Thus, it cannot quantify the effect of differ-
ent degrees of roughness on thermoelectric transport. In ad-
dition, the dependence of the power factor on the length of
the wells, which is essential for optimizing the material, has
never been addressed before. A detailed investigation of the
electron-filtering effect by a more sophisticated model free of
those shortcomings is therefore needed, and this is the aim of
the present work.

If electron transport is elastic, the electrical conductivity
and Seebeck coefficient can be expressed in the most general
form as22,23
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where � and A are the length and the cross section of the
system, respectively, f�E� is the Fermi function, and �0 is the
chemical potential. T�E� is the transmission function �not to
be confused with the transmission probability presented
later�, which contains all the information specific to the
nanostructured material. The exact transmission function can
be computed directly from the Green’s function of the sys-
tem as24

T�E� = Tr�Gr�LGa�R� , �3�

where Gr/a is the retarded �advanced� Green’s function and
�L/R=�r,L/R−�a,L/R with �r/a,L/R the retarded �advanced� self-
energy due to the left �right� lead. It is a simple exercise to
verify that Eqs. �1� and �2� reduce to those used in Refs. 18
and 19 if the following approximation to the transmission
function is used:
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where T�k	 ,E� is the transmission probability across the bar-
rier for an electron with total energy E and wave vector
parallel to the barrier k	. Reference 18 used a WKB estima-
tion for T�k	 ,E� in the k	 conserving case and the Meshkov
tunneling argument T�k	 ,E�
T�E−Vb� in the k	 noncon-
serving case. The intrinsic mean-free path �mfp� of the well
material in terms of the electron mobility �̃ is �=	kz�̃ /e.
This intuitive approximated expression was implicitly used
in Refs. 18 and 19 without rigorous justification. By analyti-
cal arguments, one can actually show that this is a reasonable
approximation if the partial transmission probabilities are
close to 1. Equation �4� is, however, not valid in other cases.
Rather than trying approximations of this sort, in the present
paper we employ accurate transmission functions computed
fully from the Green’s function. Thus, our results do not rely
on the validity or not of the Meshkov approximation. Fur-
thermore, by using a realistic model of interface roughness,
we are able to quantify its effect in terms of physical param-
eters. Finally, we also discuss inelastic electron-scattering ef-
fects, using the Keldysh formalism.24–29

II. SYSTEM AND METHOD

The system that we consider is a SL connected to two
perfect leads made of the well materials. The SL is described
by a tight-binding model in the real space in the direction
perpendicular to the interfaces and in the momentum space
for the other two directions. The Hamiltonian of one period
�cf. Fig. 1� is

H = Hw + Hb + HI, �5�

where the Hamiltonians Hw and Hb are those of the well and
barrier, respectively,

Hw/b = �
i,k	

�
w/b + Ek	,mw/b
�ci,k	

† ci,k	
+ �

�i,j,k	

tw/bci,k	

† cj,k	
+ H.c.,

�6�

where the site index i=−nw /2, . . . ,0 and i=nb+1, . . . ,nb
+nw /2 for well and i=1, . . . ,nb for barrier with the site num-
ber in a well �barrier� nw/b. Operators ci,k	

† /ci,k	
are the cre-

ation �annihilation� operators. The on-site energy is 
w/b. The
transverse energy is Ek	,mw/b

=	2k	
2 /2mw/b with the effective

mass mw/b and the transverse momentum k	. The hopping
energy tw/b is related to the effective mass as tw/b

=−	 /2a0
2mw/b with the site distance a0. The well and barrier

lengths are lw=nwa0 and lb=nba0, respectively. The barrier
height is Vb=
b−
w−2��tb�− �tw��. Symbol �i , j means to sum
over the nearest-neighbor sites. The Hamiltonian of the in-
terface is

HI = �
i=0,nb

tIci,k	

† ci+1,k	
+ �

i,j=0,nb

�
k	,k	�

tk	,k	�,i,j
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+ H.c.,
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where tI is the hopping energy due to the smooth interface
and is assumed to be �tw+ tb� /2. The rough interface causes
extra hopping energies tk	,k	�,i,j

r , which mix the states with

different transverse momenta.30 We assume that the extra
hopping energy due to the rough interface has a Gaussian
form,30

tk,k�,i,j
r = tre

−�k − k��2�2/8,

where � is the correlation length of the fluctuation in the
rough interface and tr is related to both the variance of the
fluctuation and �.

Scattering processes other than the interface scattering are
efficiently included by using the Büttiker probe method.24–29

In our calculations, a common Büttiker probe is attached to
all sites with the same site indices but with different trans-
verse momenta. This induces transitions between states with
the same energy and different total momenta, which take
place when scattering is due to impurities, disorder, or acous-
tic phonons. To mimic the inelastic-scattering process, we
use a probe with the same structure as the perfect lead and
use the parameter Ub, the coupling between the probe and
the sites, to characterize the scattering strength.26,28,29 The
electric and heat currents and in turn the conductivity and the
Seebeck coefficient are obtained by the nonequilibrium
Green’s function method.24,31 For the elastic-scattering pro-
cess, we assume that the self-energy due to a probe is a
diagonal matrix with only imaginary elements �ij

r =−i�0ij,
where ij is the Kronecker delta function24,32 and �0 is a
parameter characterizing the elastic-scattering strength and
related to the relaxation time by ��	 /2�0.

Computational requirements would in principle impose
stringent limits on the maximum system size. However, it is
possible to compute accurate transmission functions by em-
ploying a piecewise method based on the assumption of in-
coherence between scatterers.24,33,34 We numerically verified
that the approach is accurate by explicitly computing the
exact transmission through three periods and comparing with
the incoherent one. In all cases of interest, differences be-
tween the two transmissions were smaller than 3%. This per-
mits us to investigate considerably long well SLs made of
real materials, where the electron mean-free paths can reach
hundreds of nanometers. In the case of inelastic scattering,
we are unaware of any such piecewise approach, however.
Thus for the inelastic scattering, one is limited to small wells
with rather short mean-free paths, and the results are only
qualitative.

one period

lw + lb

lb

mb

mw

Vb

FIG. 1. Schematic diagram of the conduction-band edge in a
superlattice. The well and barrier have the effective mass mw and
mb, respectively. The barrier height is Vb.
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III. RESULTS AND DISCUSSION

We calculate the optimal power factors due to the electron
filtering in InGaAs/InAlGaAs SLs. The effective masses are
mw=0.043me and mb=0.058me with electron mass me.

19

The grid length in the z direction is a0=1.17 nm and the
barrier height is Vb=0.2 eV. The on-site energies are 
w
=−3.846 eV and 
b=−3.997 eV. The hopping energies are
tw=−0.64 eV and tb=−0.48 eV. We use 400 states in the k	

direction with the minimum difference of the wave vectors
6�107 m−1.

We have to know the scattering strengths in order to de-
termine the parameter of the elastic Büttiker probe. There are
different types of elastic scatterings in semiconductors such
as acoustic-phonon deformation-potential scattering, piezo-
electric scattering, impurity and alloy scattering, and so on.
The relaxation times due to different scatterings, in general,
have different energy dependences.35 To simplify the calcu-
lations, we do not include explicitly the different types of
scatterings but use an energy-independent mean-free path to
characterize the elastic scatterings.36 Because of the constant
mean-free-path assumption, the parameter of the elastic Büt-
tiker probe �0�E�=�0��E. The factor �0� is determined by fit-
ting the calculated power factors of the well and barrier bulks
to the values obtained in Refs. 19 and 20. The fitted param-
eter of the Büttiker probe is �0�E�=0.004�E /e eV in both
the wells and the barriers with E measured from the well and
barrier conduction-band edges, respectively.

When the elastic-scattering process is included, the power
factor with fixed well length monotonically increases as the
period number N increases and is saturated at large N. We
take this saturated value as the power factor of a SL. The
calculated power factors of SLs of different well lengths with
barrier length lb=9.4 nm at 300 K and 400 K are shown in
Fig. 2�a� and the inset, respectively, for the case when only
the elastic scattering is present. The straight dashed line in-
dicates the calculated power factor of bulk InGaAs, which
corresponds to ZT�0.067 with thermal conductivity �
=5.5 W /mK.19 Electron filtering increases the power factors
in SLs with both smooth and rough interfaces. However,

rough interfaces are always worse than the perfect ones. Op-
timal Seebeck coefficient and conductivity as functions of
the well length are shown in Fig. 2�b� while the optimal
chemical potentials of different well lengths are shown in the
inset.

These results are in striking contrast with the conclusions
of Refs. 18 and 19. The current flow is limited by scattering
in the well. The barrier only dominates the flow rate when its
transmission is smaller than the one across the well, i.e.,
when it is basically zero. Electrons in the well always have
some probability of scattering into the lower k	 states, which
can traverse the barrier. The net effect is that electrons are
filtered off below the barrier and allowed to pass above it,
even in the smooth barrier case. Although roughness en-
hances transmission probabilities for the larger k	 states, it
actually reduces them for the low k	 states. The resulting
balance favors the smooth surface over the rough one, since
the momentum mixing is already taking place before reach-
ing the barrier. Despite these qualitative arguments, it would
have been quite difficult to guess the actual behavior of the
system without a calculation such as the one presented here.

Figure 3 shows the calculated power factors when only
the inelastic scattering is present. As mentioned before, in
this case the calculation is limited to smaller systems. We
calculate the power factor of a single well/barrier/well sys-
tem. As we can only give qualitative results for SLs with
inelastic scatterings due to computing power limitations, we
do not choose a Büttiker probe describing the inelastic polar-
phonon scattering in semiconductors. Instead, we use the
“auxiliary probe” approach24,28,29 for the inelastic Büttiker
probe as stated in Sec. II. The parameters used for the inelas-
tic Büttiker probes are Ub=0.69tw in wells and Ub=0.069tw
in barriers. In this inelastic case, electron filtering does not
increase the power factor. However, the inelastic mfps em-
ployed are unrealistically short in this case ��5 nm�, and it
is difficult to draw quantitative conclusions. A proper ac-
count of inelastic scattering should be done in conjunction
with the elastic mechanisms rigorously studied in the previ-
ous paragraphs. In the specific case of InGaAs, the inelastic
mfp has been roughly estimated in the order of 1 �m by
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FIG. 2. �Color online� �a� Optimal power factors of superlattices of different well lengths with smooth and rough interfaces at 300 and
400 K �inset�. The dashed line indicates the power factor of bulk InGaAs. �b� Optimal Seebeck coefficients and conductivities of different
well lengths with smooth interface at 300 K. Inset: optimal chemical potentials with respect to the InGaAs band edge. Only the elastic-
scattering process is included. The parameters of roughness are tr / tI=0.1�1�, 0.2�2�, and 0.5�3�. The correlation length is �=0.5 nm. Other
parameters are given in the text.
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comparing the different mobility contributions for different
types of processes.37,38 This means that the electron filtering
in InGaAs/InAlGaAs should be effective for well lengths up

to hundreds of nanometers with possible power factor en-
hancements of about 2.2.

IV. CONCLUSIONS

In conclusion, by using the nonequilibrium Green’s func-
tion method with a realistic description of the interfaces, we
have calculated the power factor of electron-filtering super-
lattices, as functions of the degree of interface roughness and
the well length. If the scattering is elastic, the electron filter-
ing increases the power factors above the bulk value saturat-
ing toward an asymptotic value for long wells. The obtained
power factors are larger in SLs with smooth interfaces than
in SLs with rough ones, contrary to earlier suggestions. In
the strongly inelastic-scattering limit, the electron filtering
does not increase the power factor when the well length is
longer than the inelastic mean-free path.
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